Uso de las herramientas genconf del programa Gromacs 4.5.4.

Prof. José G. Parra F.

23 de Abril del 2014

En este tutorial se van a construir una monocapa de moléculas y una capa de agua usando las herramientas genconf, genbox y editconf del programa gromacs. La idea básica es aprender a realizar configuraciones iniciales para desarrollar una simulación. Para este tutorial, vamos a utilizar un archivo *.xyz construído con el programa avogadro y luego usando openbabel haremos la conversión al formato *.gro.

1. Construcción de las moléculas de agua y dppc usando Avogadro.

Con el programa avogadro se construyeron las moléculas de agua y dppc siendo optimizadas con el force field GAFF. Las configuraciones obtenidas fueron guardadas en el formato *.xyz. Para este tutorial los formatos fueron los siguientes:

Para el agua tenemos:

3

0	-0.00232	1.98208	0.01651
Н	0.96557	1.95596	-0.02187
Н	-0.28117	1.45993	-0.75067

Para el dppc tenemos:

130

С	-4.07464	0.05633	-0.00134

N	-2.64835	-0.43783	-0.10676
С	-2.07916	0.01934	-1.43173
С	-1.84344	0.17582	1.01717
С	-2.64352	-1.95386	-0.01277
С	-1.26999	-2.65640	-0.00014
0	-1.47521	-4.08184	-0.07138
Р	-0.20533	-5.05001	0.07676
0	0.87732	-4.42756	-0.96081
0	0.28402	-5.24896	1.45918
0	-0.70117	-6.36589	-0.69730
С	-1.36871	-7.39555	0.05983
С	-0.29068	-8.37714	0.59715
0	-2.35787	-8.06898	-0.78008
С	0.37314	-9.21016	-0.52331
0	0.79155	-10.50301	0.01268
С	-3.32002	-8.81198	-0.19317
С	-2.88032	-10.26145	-0.05144
С	-4.01882	-11.29350	-0.18809
С	-3.43604	-12.71434	-0.04855
С	-4.51552	-13.80760	-0.16265
С	-3.86073	-15.19570	-0.01983
С	-4.88657	-16.34079	-0.12764
С	-4.16793	-17.69769	0.01100
C	-5.14143	-18.88801	-0.09600
C	-4.36437	-20.21429	0.02866
C	-5.29080	-21.44204	-0.07539
C	-4.46657	-22.74178	0.03087
C	-5.35795	-23.99597	-0.06749
C	-4.50401	-25.27809	0.02309
C	-5.37671	-26.54628	-0.06972
С	-4.51500	-27.81974	0.01203
0	-4.49245	-8.52647	-0.33892
C	1.10146	-11.50290	-0.84547

С	1.77290	-12.67624	-0.15362
С	1.10363	-14.03045	-0.49284
С	1.96564	-15.21952	-0.00447
С	1.29279	-16.58317	-0.28622
С	2.24806	-17.75899	0.02798
С	1.55953	-19.12726	-0.17975
С	2.54704	-20.30062	0.01991
С	1.83469	-21.66463	-0.12263
С	2.82161	-22.84715	0.00695
С	2.08208	-24.20049	-0.08768
С	3.05559	-25.39667	0.00095
С	2.29238	-26.73824	-0.06286
С	3.25276	-27.94550	0.00303
С	2.47503	-29.27868	-0.04463
С	3.42499	-30.48954	0.01056
0	0.95494	-11.44996	-2.05046
Н	-4.11088	1.14738	-0.07194
Н	-4.50814	-0.24211	0.95745
Н	-4.68681	-0.36276	-0.80492
Н	-2.67194	-0.41397	-2.24243
Н	-1.03217	-0.25560	-1.58299
Н	-2.15657	1.10894	-1.49008
Н	-1.92697	1.26521	0.96358
Н	-0.78301	-0.08664	0.97269
Н	-2.24486	-0.15735	1.97834
Н	-3.22152	-2.30664	-0.87211
Н	-3.18153	-2.21929	0.90196
Н	-0.72843	-2.42632	0.92130
Н	-0.67211	-2.35025	-0.86181
Н	0.48851	-7.82142	1.12224
Н	-0.73755	-9.03137	1.34435
Н	1.23782	-8.67344	-0.92380
Н	-0.33464	-9.37102	-1.33898

Н	-2.41064	-10.39009	0.92428
Н	-2.12723	-10.48597	-0.80850
Н	-4.50236	-11.18384	-1.16220
Н	-4.77103	-11.12014	0.58550
Н	-2.93326	-12.80395	0.91813
Н	-2.68112	-12.87078	-0.82409
Н	-5.01814	-13.73158	-1.13028
Н	-5.26714	-13.66874	0.61867
Н	-3.35195	-15.25674	0.94591
Н	-3.10172	-15.31686	-0.79739
Н	-5.39762	-16.28904	-1.09247
Н	-5.64021	-16.23767	0.65730
Н	-3.65384	-17.73712	0.97500
Н	-3.40711	-17.78281	-0.76946
Н	-5.66184	-18.85354	-1.05661
Н	-5.89326	-18.82260	0.69472
Н	-3.83974	-20.23745	0.98746
Н	-3.60881	-20.26429	-0.75985
Н	-5.82379	-21.42084	-1.02946
Н	-6.03563	-21.40980	0.72397
Н	-3.92831	-22.75330	0.98227
Н	-3.72134	-22.76346	-0.76865
Н	-5.90328	-23.98450	-1.01474
Н	-6.09420	-23.98618	0.74038
Н	-3.95418	-25.28322	0.96792
Н	-3.76879	-25.28264	-0.78592
Н	-5.93022	-26.54542	-1.01199
Н	-6.10705	-26.55185	0.74319
Н	-3.79343	-27.85001	-0.80782
Н	-5.14629	-28.70855	-0.05328
Н	-3.96831	-27.85531	0.95732
Н	1.76194	-12.52775	0.92912
H	2.82034	-12.69179	-0.46337

Н	0.96730	-14.11224	-1.57406
Н	0.11302	-14.06983	-0.03261
Н	2.15215	-15.12334	1.06823
Н	2.93451	-15.18444	-0.50952
Н	0.99526	-16.63492	-1.33671
Н	0.38597	-16.67125	0.31774
Н	2.59718	-17.68317	1.06100
Н	3.12526	-17.69164	-0.62086
Н	1.14233	-19.17665	-1.18881
Н	0.72928	-19.22346	0.52465
Н	3.00415	-20.23187	1.01041
Н	3.34930	-20.22862	-0.71911
Н	1.33746	-21.71572	-1.09469
Н	1.06253	-21.74958	0.64634
Н	3.34577	-22.78501	0.96413
Н	3.57191	-22.78388	-0.78549
Н	1.53457	-24.25029	-1.03242
Н	1.34949	-24.26865	0.72071
Н	3.61936	-25.34224	0.93582
Н	3.77338	-25.34470	-0.82182
Н	1.71553	-26.78496	-0.99017
Н	1.58439	-26.79221	0.76822
Н	3.83781	-27.89787	0.92514
Н	3.95267	-27.90126	-0.83545
Н	1.88419	-29.32850	-0.96267
Н	1.77999	-29.32988	0.79720
Н	4.11153	-30.48087	-0.83922
Н	2.85291	-31.41966	-0.02095
Н	4.01129	-30.47912	0.93231
Н	-1.90001	-6.89143	0.88270

Usando el programa openbabel, podemos hacer la conversion al formato *.gro. El comando es el siguiente:

\$ obabel dppc.xyz -0 dppc.gro
\$ obabel agua.xyz -0 agua.gro

Para el caso del agua usaremos esta información modificada:

agi	ua					
3						
	1SOL	OW	1	.230	.628	.113
	1SOL	HW1	2	.137	.626	.150
	1SOL	HW2	3	.231	.589	.021
	0.00000	0.00	000	0.00000		

En el caso de la molécula de dppc, la vamos a introducir en una celda de dimensiones $1.2 \times 1.2 \times 3.4$ nm^3 . A su vez, puede ser centrada y rotada dentro de la caja usando la herramienta editconf:

editconf -f dppc.gro -rotate 90 0 0 -o dppc1.gro -center 0.6 0.6 1.7 -aligncenter 0 0 0 -box 1.2 1.2 3.4

Se puede observar que la molécula fue rotada 90 grados en el eje x y queda alineada a lo largo del eje z. Con el siguiente comando se puede imprimir una configuración en formato *.pdb.

trjconv -f dppc1.gro -s dppc1.gro -o dppc1.pdb

Usando pymol podemos ver la configuración de la molécula. En la figura 1, se muestra la molécula centrada en la caja.

2. Construcción de la monocapa de dppc.

Con este sistema procedemos a construir una monocapa de la molécula de dppc. Para ello podemos usar la herramienta genconf para construir el sistema que contendrá 25 moléculas de dppc.

Usando la línea genconf -h, pueden ver la ayuda de esta herramienta. El siguiente comando permite construir la monocapa en la dirección del eje z:

\$ genconf -f dppc1.gro -dist 0.6 0.6 1 -nbox 5 5 1 -o dppcbox.gro

Figura 1: Caja de dppc obtenida usando la herramienta editconf. La imagen fue hecha con pymol.

En este sistema la monocapa tiene un total de 25 moléculas de dppc y la celda tiene dimensiones $9x9x4.4 \ nm^3$. En la figura 2, se muestra la monocapa construida en este caso. Podemos modificar esta celda usando la herramienta editconf. El comando es el siguiente:

```
$ editconf -f dppcbox.gro -o dppcbox1.gro -center 4.5 4.5 2.2 -box 9.0 9.0 20.0
```

Con este comando colocamos la monocapa en el fondo de la caja, cuyas nuevas dimensiones son $9x9x20 \ nm^3$.

3. Construcción de la monocapa de agua.

Ahora vamos a construir una capa de agua la cual colocaremos sobre la monocapa de dppc. Para ello, colocaremos 2600 molculas de agua en la caja de dimensiones 9x9x1:

\$ genbox -ci agua.gro -nmol 2600 -box 9 9 1 -o aguabox.gro

Luego con el siguiente comando, modificamos la posición de la capa de agua en la celda:

\$ genbox -ci agua.gro -nmol 2600 -box 9 9 1 -o aguabox.gro

Luego modificamos la posición de la capa con:

```
$ editconf -f aguabox.gro -o aguabox1.gro -center 4.5 4.5 5.1 -box 9.0 9.0 20.0
```


Figura 2: (a) Monocapa de dppc vista desde arriba. (b) Monocapa de dppc vista lateralmente. La imágenes fueron hechas con vmd.

4. Construcción del sistema complejo.

Unimos las dos celdas con la siguiente línea de comandos:

\$ genbox -cp dppcbox1.gro -cs aguabox1.gro -o dppc-agua.gro

La celda obtenida tiene dimensiones iguales a $9x9x20 \ nm^3$. En la figura 3, se muestra las dos capas unidas con cierto espacio vacío a lo largo del eje z.

Figura 3: Caja de dppc-agua obtenida usando la herramienta genbox. La imagen fue hecha con pymol.

Si queremos centrar el sistema dentro de la caja podemos escribir el siguiente comando:

```
$ editconf -f dppc-agua.gro -o dppc-agua1.gro -center 4.5 4.5 10.0
-box 9.0 9.0 20.0
```

En la figura 4, se muestra las dos capas unidas centradas a lo largo del eje z.

Figura 4: Caja de dppc-agua obtenida usando la herramienta genbox. La imagen fue hecha con pymol.

Con este tutorial podemos también diseñar una segunda monocapa y colocarla en el otro extremo para generar un sistema de dos componentes saturados con surfactante o una simple membrana lipídica.